Computer vision uncovers three fundamental dimensions of levodopa-responsive motor improvement in Parkinson’s disease.

Lange F, Guarin DL, Ademola E, Mahdy D, Acevedo G, Odorfer T, Wong JK, Volkmann J, Peach R, Reich M.

NPJ Parkinsons Dis. 2025 May 28;11(1):140. doi: 10.1038/s41531-025-00999-w. PMID: 40436873.

Abstract

We developed VisionMD, an AI computer vision platform, analyzing over 1200 clinical videos of Parkinson’s patients’ hand movements across 13 years. This large-scale, markerless analysis identified three kinematic domains (speed, consistency, timing/scale) reliably improved by levodopa. Our method offers objective, quantitative motor assessment, reducing subjectivity and enhancing reproducibility compared to traditional scales.

Areas
Authors
Lange F, Guarin DL, Ademola E, Mahdy D, Acevedo G, Odorfer T, Wong JK, Volkmann J, Peach R, Reich M.
Journal
NPJ Parkinsons Dis.
Share

https://sfb-retune.de/wp-content/uploads/2021/11/logo-charite.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-ukw.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-duesseldorf.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-ltr.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-mpi.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-potsdam.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-rostock.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-wuerzburg.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-bernstein.png