Directed and acyclic synaptic connectivity in the human layer 2-3 cortical microcircuit.

Paper of the Month 04/2024

Peng Y, Bjelde A, Aceituno PV, Mittermaier FX, Planert H, Grosser S, Onken J, Faust K, Kalbhenn T, Simon M, Radbruch H, Fidzinski P, Schmitz D, Alle H, Holtkamp M, Vida I, Grewe BF, Geiger JRP.

Science. 2024; 384(6693): 338-343. doi: 10.1126/science.adg8828. PMID: 38635709.

Abstract

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.

Areas
Member Authors
Authors
Journal
Share

https://sfb-retune.de/wp-content/uploads/2021/11/logo-charite.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-ukw.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-duesseldorf.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-ltr.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-mpi.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-potsdam.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-rostock.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-uni-wuerzburg.png
https://sfb-retune.de/wp-content/uploads/2021/11/logo-bernstein.png