Abstract
Degeneration of the nigrostriatal tract is a neuropathological hallmark of Parkinson’s disease (PD). A differential intraneuronal vulnerability of dopaminergic neurons within the substantia nigra (SN) has been suggested, starting as an axonopathy followed by neuronal cell loss that is accompanied with motor deficits. To date, there is no therapy available to delay or halt this neurodegeneration. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2) and histone deacetylase 1 (HDAC1) are crucial molecular regulators that undergo nucleo-cytoplasmic shuttling and are involved in regulation of axonal and perikarya degeneration of neurons under various pathologic conditions. We here aimed to analyze the time course of dopaminergic neurodegeneration in an AAV PD rat model overexpressing human mutated A53T α-synuclein (haSyn), differentially correlate striatal terminal and SN perikarya loss with behavioral deficits and investigate if nucleo-cytoplasmic Nrf2 and HDAC1 expression are altered in dopaminergic perikarya of the haSyn PD rat model. We observed impaired motor performance in haSyn PD rats assessed by the single pellet reaching task at four- and six-weeks post AAV injection (P < 0.05 each). However, only striatal terminal loss correlated significantly with motor deficits in haSyn PD rats, indicating that parkinsonian motor features reflect the striatal dopaminergic denervation, but cannot be taken as an indirect measure of neurodegeneration per se. Immunofluorescence staining demonstrated an upregulation of HDAC1 in the dopaminergic cell nucleus (P < 0.05) while no changes were observed for Nrf2. These data suggest a critical functional role of the axonopathy on motor behavior in haSyn PD rats and mechanistically point towards an impaired nucleo-cytoplasmic translocation of HDAC1 and thus a potential role of disturbed histone acetylation in neurodegeneration.